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Abstract
A molecular dynamics (MD) study of the static and dynamic properties of molten and glassy
germanium dioxide is presented. The interactions between the atoms are modeled by the
classical pair potential proposed by Oeffner and Elliott (OE) (1998 Phys. Rev. B 58 14791). We
compare our results to experiments and previous simulations. In addition, an ‘ab initio’ method,
the so-called Car–Parrinello molecular dynamics (CPMD), is applied to check the accuracy of
the structural properties, as obtained by the classical MD simulations with the OE potential. As
in a similar study for SiO2, the structure predicted by CPMD is only slightly softer than that
resulting from the classical MD. In contrast to earlier simulations, both the static structure and
dynamic properties are in very good agreement with pertinent experimental data. MD
simulations with the OE potential are also used to study the relaxation dynamics. As previously
found for SiO2, for high temperatures the dynamics of molten GeO2 is compatible with a
description in terms of mode coupling theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding the structure and dynamics of glassforming
fluids and the nature of the glass transition is one of the most
challenging unsolved problems of the physics of condensed
matter [1–7]. One of the most debated issues is the question
to what extent the glass transition is a universal phenomenon;
i.e. it is debated whether the mechanisms causing the dramatic
slowing down in undercooled fluids when the glass transition
is approached are basically the same in all glassforming
materials, or whether qualitatively different classes of glass
transitions exist, similar to the ‘universality classes’ of critical
phenomena [8].

One such distinction in two classes has been proposed
by Angell [9], namely the distinction between ‘strong’ and

‘fragile’ glassformers. Plotting the logarithm of the viscosity
η(T ) versus the normalized inverse temperature Tg/T (the
glass transition temperature Tg is here defined somewhat
arbitrarily from the condition η(T = Tg) = 1013 Poise),
one observes that certain network-forming materials such as
molten SiO2 and molten GeO2 simply follow straight lines,
i.e. the temperature dependence of η(T ) can be described by
an Arrhenius law,

η(T ) = η∞ exp(Ea/kBT ), (1)

where η∞ is a constant and Ea plays the role of an
activation energy. However most other glassforming systems,
in particular polymer melts, multicomponent metallic melts,
and fluids formed from small organic molecules, behave
differently. For these glassformers, the plot of log[η(T )] versus
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Tg/T is strongly curved. Following Angell [9], these systems
are called ‘fragile glassformers’.

There is ample evidence [6, 10] that in fragile glassformers
the initial stages of slowing down, when the structural
relaxation times grow from the picosecond scale by several
orders of magnitude, can be described rather well by mode
coupling theory (MCT) [3], although some aspects of this
theory are still under discussion [11], and there is no
consensus on the behavior near Tg [6, 12–14]. For the case
of silica, computer simulation studies [15–17] have shown
that the relaxation dynamics at high temperatures can be
well described by MCT, whereas at low temperatures an
Arrhenius behavior is observed, as seen in experiments (note
that the high temperature regime is almost inaccessible to
experiment). This indicates that, at least on a qualitative
level, the ‘strong glassformer’ SiO2 exhibits a similar behavior
for the temperature dependence of transport coefficients and
structural relaxation as typical ‘fragile glassformers’. Now,
the question arises whether this is also true for the other
prototype of a ‘strong glassformer’, namely GeO2. While
molten silica has been studied extensively, both by various
experimental techniques and by computer simulations [15–35],
there are fewer studies of molten and glassy germanium
dioxide, and this holds true for both experiments [36–47] and
simulations [48–57].

In the present work, we hence present a detailed molecular
dynamics (MD) [58, 59] study of molten and glassy GeO2

at zero pressure, using a pair potential model that has
been recently proposed by Oeffner and Elliott [48]. In
order to check whether the Oeffner–Elliott (OE) potential
provides a chemically realistic modeling of GeO2, we perform
also ‘ab initio’ Car–Parrinello molecular dynamics (CPMD)
simulations [60–62] and compare various structural and
dynamic quantities as obtained from classical MD using
the OE potential with those from the CPMD calculations.
Moreover, our simulation results are also validated by
comparison to experimental data.

In section 2 we summarize the models and methods
of the simulation, while section 3 is devoted to a
description of the static properties of molten and glassy GeO2

(partial pair distribution functions and structure factors, ring
statistics and angular distributions, etc). Section 4 presents
selected information on dynamic properties (mean square
displacements, intermediate incoherent scattering functions),
while section 5 summarizes some conclusions.

2. Models and simulation methods

2.1. Classical MD

In a classical MD simulation, all degrees of freedom due to
the electrons are disregarded, as well as quantum effects due
to the ions (which need to be included for a correct description
of thermal properties of glasses at temperatures far below the
glass transition temperature). One simply solves Newton’s
equations of motion, which is conveniently done applying the
velocity form of the Verlet algorithm [58, 59]. Forces are

computed using the OE potential [48],

Vαβ(ri j) = qαqβe2

ri j
+ Aαβ exp(−Bαβri j) − Cαβr−6

i j

α, β ∈ Ge, O. (2)

Here, ri j = |�ri − �r j | is the distance between a pair of
particles at positions �ri and �r j . The first term on the right-
hand side of equation (2) describes Coulomb interactions,
with e the elementary charge and the values qGe = 1.5
and qO = −0.75 for the partial charges of germanium and
oxygen ions, respectively [48]. The second and third term
in (2) form a Buckingham potential and describe the short-
range part of the potential. The constants Aαβ , Bαβ and Cαβ

are [48] AGeO = 208 011.52 eV, BGeO = 6.129 329 Å
−1

,
CGeO = 236.653 eV Å

6
, AOO = 7693.522 eV, BOO =

3.285 108 Å
−1

, and COO = 131.09 eV Å
6
. The Buckingham

terms for the Ge–Ge interaction are set to zero. The OE
potential was derived from quantum-chemical calculations of
GeO4 tetrahedra, also using experimental data from the α-
GeO2 crystal structure at T = 300 K as input information. We
note that analogous procedures for the chemically similar case
of SiO2 have led to the potential due to van Beest, Kramer and
van Santen (‘BKS potential’) [63], which has proven useful
in reproducing a great variety of experimental results rather
accurately [15, 22, 25, 26, 30]. Note that for SiO2 the effective
charges are different (qSi = 2.4, qO = −1.2), despite the
chemical similarity. Thus, a combination of the OE and the
BKS potential would not be suitable for the description of
oxide melts containing both GeO2 and SiO2, since the O–O
interaction is modeled differently in both cases.

Several other potential models have been proposed in the
literature [52, 64, 65], but structural properties of liquid GeO2

derived from these potentials are not in good agreement with
experiment, and hence these potentials were not used in the
present study.

While the short-range part of equation (1) was cut off
and shifted to zero at a distance rc = 7.5 Å [66], the long-
range Coulomb interactions were treated by Ewald summation
methods [58, 66]. The equations of motion were solved
for systems of N = 1152 atoms using an integration time
step of 1.23 fs and periodic boundary conditions in all three
spatial directions. The simulations in the N pT ensemble at
constant zero pressure, p = 0, yielded linear dimensions
L(T ) of the cubic simulation box in the range 26.6 Å �
L(T ) � 28.4 Å for temperatures in the range 2530 K �
T � 6100 K. Pressure was kept constant using an Andersen
barostat, using a value of 8 × 10−3 u for the mass of the
piston [68]. Constant temperature was realized by coupling
the system periodically (i.e. every 0.18 ps) to a stochastic heat
bath [58]. Note that the runs in the N pT ensemble were only
used to create well-equilibrated initial configurations for runs
in the microcanonical NV E ensemble (V denoting the system
volume and E its internal energy). Using force parallelization
with message passing interface (MPI) routines, an efficient use
of the Jülich multiprocessor system (JUMP) with 32 processors
used in parallel was possible. Equilibration times te spanned
the range from 48.9 ps (40 000 time steps) at T = 6100 K to
11.97 ns (almost 107 time steps) at T = 2530 K, to generate
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8 initial configurations, which were then propagated in the
NV E ensemble for the same time interval te, during which
structural and dynamical properties were recorded. Note that
the time te was chosen such that the slower species (Ge) moved
on average a distance of 5.5 Å at each temperature. Further
implementation details are documented in [66].

2.2. CPMD

Car–Parrinello molecular dynamics (CPMD) simulations
[60, 61] of GeO2 have been performed, using the CPMD
software [62]. In CPMD, the electronic degrees of freedom
are treated in the framework of density functional theory,
in this work within the general gradient approximation
(GGA). An important issue for CPMD is the quality of the
pseudopotentials, which are a necessary input for any ab initio
calculation that does not take into account the electronic
degrees of freedom of all the electrons of an atom, but only
the valence electrons. While we found that a pseudopotential
due to Goedecker et al [69] was computationally too
demanding for our purposes, a pseudopotential with the
BLYP exchange–correlation functional in the Troullier–
Martins parametrization [70] was found to be satisfactory. As
an energy cut-off for the plane waves Ecut = 75 Ryd was
used, similar to in related work for SiO2 [28]. The time step
was 0.0726 fs. For the thermostatting of the system, we used
Nosé–Hoover chains [71] for each ionic degree of freedom as
well as for the electronic degrees of freedom to counterbalance
the energy flow from ions to electrons [72]. The parameters
used for the Nosé–Hoover chains can be found in a previous
publication [29].

An important problem in CPMD simulations of amor-
phous systems is the generation of suitable initial configura-
tions. While in the case of SiO2, it was found useful to start
from classical MD simulations using the BKS potential [63]
and relax these configurations to new equilibrium states by
CPMD [28, 73, 74], in the case of GeO2 (using the OE po-
tential [48]) such a procedure did not converge [66]. The rea-
son for this failure is that the differences between equilibrated
atomic configurations using either classical MD or CPMD
methods for GeO2 are slightly larger than for SiO2, as far as
interatomic distances, angles etc are concerned. At the temper-
atures of interest (T = 3760 and 3000 K), which are far above
the melting temperature Tm of GeO2 (Tm = 1389 K [75]) it
is also too time-consuming to start from a crystalline config-
uration and melt it in a CPMD run; thus we decided to start
from configurations generated by classical MD at T = 7000 K,
where subsequent equilibration by CPMD turned out to be fea-
sible (for 60 particles this took 53 000 CPMD steps, while for
120 particles 21 000 CPMD steps were sufficient, using peri-
odic boundary conditions throughout). Then the temperature
was lowered in a single step to T = 3760 K (for N = 60)
or T = 3000 K (for N = 60 and 120), respectively. At
T = 3760 K, runs over 171 000 time steps for equilibration
and production were performed corresponding to a real time of
12.4 ps. At T = 3000 K, we did runs over 340 000 time steps
for the system with 60 particles and 420 000 time steps for the
system with 120 particles, thus covering a time range of 24.7 ps

and 30.5 ps, respectively. In order to obtain better statistics, we
averaged over 6 independent simulation runs for each system
size and temperature considered.

The density was chosen to be ρ = 3.45 g cm−3, similar
to the equilibrium density resulting from the classical MD
simulations in this temperature range, in order to be able to
compare MD and CPMD results at essentially the same density.
This choice implies linear dimensions of the simulation box of
L = 10.023 Å for N = 60 and L = 12.629 Å for N = 120.
Since the periodic boundary condition does significantly affect
the structure and correlation functions for distances that exceed
L/2, the smallness of N and L is clearly a major disadvantage
of our implementation of CPMD, and prevents us from a
meaningful study of intermediate range order by CPMD. The
application of novel versions of ab initio MD, suitable to
simulate significantly larger systems [76], is desirable, but
must be left to future work.

Finally, we mention that sometimes the generated
configurations had to be discarded ‘by hand’, when they
contained well-identifiable O2 molecules disjunct from the
remaining germanium oxide network (which then, of course,
necessarily has coordination defects). It is clear that at
T = 7000 K such chemical disintegration of GeO2 may be
a physically meaningful effect. But we are interested in the
properties of GeO2 at lower temperatures, where these separate
O2 molecules should no longer occur, but rather should be
reintegrated into the network structure. However, experiments
by Vergano and Uhlmann [77] have found evidence for the
occurrence of O2 molecules in germania melts above about
1500 K. But since the occurrence of O2 molecules in the
CPMD is probably a result of the preparation of our samples,
we prefer here to select only configurations without O2

molecules for the analysis.
With respect to other implementation details, we closely

followed the procedures of Benoit et al [29] (see also [66]).
We only note that, in our case, the CPU time required for the
CPMD is a factor of 358 000 higher than that needed for the
classical MD, using the same multiprocessor system and the
same system size for both methods [66]. Therefore, only a
rather restrictive use of CPMD was feasible.

3. Static properties of molten and glassy GeO2

As discussed in section 2.1, equilibration was done in the
framework of classical MD using the N pT ensemble which
allows us to record the temperature dependence of the density
(figure 1). In our MD simulation, the lowest temperature
which could still be equilibrated with manageable effort was
T = 2530 K. This temperature corresponds to almost twice
the melting temperature [75], while experimental data are only
available at much lower temperatures. Therefore, we used
states at T = 2750 K for further cooling down of the samples
(note that the states at T = 2530 K were not yet available when
these cooling runs were performed). To this end, temperature
was linearly decreased according to

T (t) = 2750 K − Qt, (3)
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Figure 1. Density of GeO2 plotted versus temperature.
Well-equilibrated MD results (diamonds), using the OE potential, are
shown in the temperature range 6100 K � T � 2530 K. The dotted
line connecting the data points serves only as a guide to the eye. The
MD data shown for T < 2750 K result from cooling runs with two
different cooling rates, using well-equilibrated configurations at
T = 2530 K as a starting point (cf equation (3)). All the simulation
results were obtained at zero pressure. Experimental data from
Riebling [36] and Dingwell et al [39] are shown for comparison.

with cooling rates Q = 2.25 × 1013 and 1.13 × 1012 K s−1.
As in the case of SiO2 [15, 22], the cooling rates available
in MD exceed those of the experiment by many orders of
magnitude, and a meaningful extrapolation to these very
small experimental cooling rates is not possible. Although
the presence of a density maximum (as is known to occur
in SiO2 [78]) somewhere around T = 2000 K cannot be
excluded, it seems very unlikely that for slow cooling rates the
simulated densities for T � 1700 K would decrease enough
to match the experimental data. So we attribute the larger
part of the mismatch between simulated and experimental melt
densities to the inadequacy of the OE potential to predict the
density very accurately. However, such a 5% discrepancy in
the density is not uncommon when classical pair potentials are
used.

Surprisingly, at T = 300 K the experimental density is
ρexp ≈ 3.65 g cm−3 and the simulated one (with the slowest
of our cooling rates) ρsim ≈ 3.70 g cm−3, thus only 1.37%
higher. However, this good agreement is presumably due to
a lucky cancelation of errors (freezing in a too high density
due to the inaccurate potential, partially compensates for not
reproducing the rapid variation of the density of supercooled
GeO2 around T = 1000 K due to our excessively rapid
cooling). This example again shows that fits or misfits of
isolated experimental data points by simulations are unsuitable
to judge the quality of potentials and/or simulation procedures.

Further information on the static structure are provided
by the static structure factor. Note that this quantity can be
measured using neutron scattering techniques. Since we deal
here with two species, it is appropriate to consider partial
structure factors Sαβ(q) (α, β = Ge, O)

Sαβ(q) = 1

N

〈
Nα∑

i=1

Nβ∑
j=1

exp(i�q · �ri j)

〉
, (4)

Figure 2. Partial neutron scattering structure factors Sαβ(q) plotted
versus wavenumber q, comparing the present MD simulation to the
experimental data of Salmon et al [46, 47] at T = 300 K.

where Nα (Nβ ) corresponds to the number of particles of
species α (β) = Ge, O. Note that fluids and glasses are
isotropic and hence Sαβ(q) depends only on the absolute value
q = |�q| and not on the direction of the scattering vector �q .
Using suitable isotopes, all partial structure factors for GeO2

have recently been measured by Salmon et al [46, 47]. Figure 2
reveals an overall good agreement between our simulation
results and these data. However, there are discrepancies at
small q (q < 2 Å

−1
) that indicate that the intermediate

range order in GeO2, as seen by the OE potential, exhibits
differences to that, as found by experiment. This observation is
in agreement with recent studies, comparing simulations with
the OE potential to experiment [46, 57].
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Standard neutron scattering yields a scattering intensity
weighted with the scattering lengths bα, bβ as follows

S(q) = N∑
α Nαb2

α

∑
α,β∈{Ge,O}

bαbβ Sαβ(q). (5)

Using5 bGe = 8.185 fm, bO = 5.803 fm one can compute
from equations (4) and (5) the neutron scattering structure
factor from the simulation and compare it to the corresponding
experimental data [43] without any adjustable parameters
whatsoever. Also for this comparison [51, 67] the general
agreement between simulation and experiment is rather good;
both predict a ‘first sharp diffraction peak’ (FSDP) [1, 6, 79] at
about qmax ≈ 1.55 Å

−1
, which can be attributed in real space to

the linear dimension of two GeO4 tetrahedra sharing a corner
(see below), � = 2π/qmax ≈ 4.05 Å.

When we compare to SiO2 [15, 80] we note that in
SiO2 the FSDP occurs at a slightly larger value, qmax ≈
1.7 Å

−1
, implying a somewhat smaller linear dimension of

the two corner-sharing SiO4 tetrahedra (note that the ‘chemical
rules’ [1] for the formation of perfect binary continuous
random networks, with a cation in the center of a tetrahedron
and oxygens at the corners, such that each oxygen is shared by
two neighboring tetrahedra, are identical for SiO2 and GeO2).
But a more interesting difference is the fact that SiO2 shows a
second well-developed peak, at about q ′

max ≈ 3 Å
−1

, which

corresponds to a peak in GeO2 at about q ′
max ≈ 2.6 Å

−1
.

While in the total neutron scattering structure factor this peak
is hardly distinguishable from the noise, the partial static
structure factors figures 2 and 3 reveal that actually this is the
main peak in the structure, corresponding to a distance �′ =
2π/q ′

max ≈ 2.4 Å. This distance is similar to the base to apex
distance in a regular tetrahedron [47], 4rGeO/3 ≈ 2.33 Å (with
rGeO = 1.75 Å the average length of a GeO bond, see below).
In real space, i.e. in the partial pair distribution functions
gαβ(r), the peaks in the partial static structure factors are
reflected by oscillations with a rapidly decreasing amplitude
at large distances (figure 4). These correlations are obtained
from the simulated configurations, using the definition

gαβ(r) = Nαβ

〈
Nα∑

i=1

Nβ∑
j=1

1

4πr 2
δ(r − |�ri − �r j |)

〉
,

α, β = {Ge, O}, (6)

where Nαβ = V/(Nα Nβ) if α �= β while Nαα = V/[Nα(Nα −
1)], V being the volume of the simulation box. The correlation
functions gαβ(r) and Sαβ(q) are related via [6, 81]

Sαβ(q) = 1 + (N/V )

∫
[gαβ(�r) − 1] exp(i�q · �r) d�r . (7)

In the following, we shall focus on gαβ(r) rather than on
Sαβ(q). Figure 4 shows the gαβ(r) from the simulation for
the melt at 4300 and 2530 K as well as for the glass at 300 K.
Also included in the figure are the experimental gαβ(r) at room
temperature, as measured by Salmon et al [46]. As expected

5 See NIST Neutron Scattering lengths and CrossSections available at http://
www.ncnr.rist.gov/resources/n-lengths/.

Figure 3. Partial structure factors SGeGe(q), part (a), SGeO(q), part
(b), and SOO(q), part (c), plotted versus q and four temperatures, as
indicated.

from figure 2, the largest discrepancies between simulation
and experiment can be seen in gGeGe(r), where in particular
the shape of the first and the second peak is different in the
experimental data. However, the location of the first peaks
in gαβ(r) and the average coordination numbers zαβ show an
overall good agreement with experiment (see table 1). Note
that the coordination number zαβ is the number of nearest
neighbors of type β around a particle of type α. For the cut-off
distances defining nearest neighbors we have chosen 3.68 Å,
2.0 Å and 3.15 Å for the GeGe, GeO and OO correlations,
respectively. These cut-off distances correspond to the minima
in the corresponding partial pair distribution functions.

5
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Figure 4. Partial pair distribution functions gαβ(r) for GeO2 plotted
versus r for liquid GeO2 at 4300 and 2530 K as well as for glassy
GeO2 at 300 K, as obtained from classical MD. Also included are
experimental results by Salmon et al [46], as determined from
Fourier transforms of measured partial static structure factors at room
temperature.

As we can infer from figure 4, the first peak in gGeO(r)

is a factor of two higher in the simulation than in the
experiment. Moreover, the average coordination number zGeO

is significantly below 4 in the experiment whereas it is slightly
above 4 in the simulation (table 1). This is surprising regarding
the good agreement of the partial structure factors for the
GeO correlations. However, one has to keep in mind that
the experimental gαβ(r) are affected by the q space resolution
function of the instrument used to measure the diffraction data
(see appendix C of [83]). The resolution function will have a

Table 1. Positions of the first peaks in gαβ(r) and the average
coordination numbers zαβ for the αβ correlations. The results from
the classical MD simulation at 300 K are compared to experimental
values [47].

rGeGe

(Å)
rGeO

(Å)
rOO

(Å) zGeGe zGeO zOO

Sim. 3.22 1.75 2.85 4.15 4.01 6.62
Exp. [47] 3.16 1.73 2.83 4.1 3.8 6.7

particularly severe effect on the height of the first Ge–O peak
(the nearest-neighbor distance is relatively short and the spread
of nearest-neighbor distances is small) and leads to a reduction
from 4 in the Ge–O coordination number. Note that the Ge–
O distance (about 1.75 Å) clearly is the smallest distance
occurring in the structure, and the sharpness of this peak (note
the ordinate scale of figure 4(b) in comparison to that of
figure 4(a)) reveals that the GeO4 tetrahedra are fairly rigid.
Only for the Ge–Ge distance a slight systematic discrepancy
between MD and experiment is visible. Comparing to the
CPMD results (figure 5), however, this discrepancy seems to
be removed.

We have also compared CPMD results for Sαβ(q)

and S(q) with the corresponding MD results [66]; these
comparisons strengthen the conclusion that one can also draw
from figure 5, namely that MD yields a rather accurate
description of the local structure of molten GeO2. Note that
slight discrepancies in gOO(r) for r > 5 Å should not be
taken very seriously, because at these distances CPMD suffers
from finite size effects, as noted above. More interesting
is the difference (emphasized in the inset of figure 5(c))
concerning the feature near 1.5 Å. Testing carefully different
equilibration times it was possible to show that the prepeak
in gOO(r) has a larger amplitude if the equilibration time is
too short [66]. Therefore, this difference between the CPMD
and the MD results is probably a real effect, at least it is
not an artifact of too short equilibration. Of course, one can
question the accuracy of CPMD somewhat on other grounds:
other ‘ab initio’ studies of the GeO2 structure [51, 82] using
different pseudopotentials and system preparation procedures
predicted somewhat different results (e.g. the Ge–O distance
rGeO = 1.69 Å [82] or rGeO = 1.78 Å [51], while we obtain
1.71 Å and the experimental value is 1.73 ± 0.03 Å [40, 45]).

We now turn our attention to the analysis of structural
features on intermediate length scales. To this end, we recall
the concept of ‘ring statistics’ [6, 22]. One considers the
shortest closed paths in the network of covalent bonds, starting
from an oxygen atom (figure 6). The length n of a ring is then
the number of cations (Ge in the present case, or Si in the case
of silica [22]) that one passes before one returns to the starting
point. Figure 6 shows, as an example, n = 6 (left) and n = 2
(middle part). In SiO2 (both in the bulk and at free surfaces
to vacuum), it has been found that the angles between atoms
in a ring with n = 2 and 3 differ appreciably between the
classical MD simulation and its CPMD counterpart [73, 74],
and this also significantly affects the probability P(n) that a
ring of length n occurs in the structure (in thermal equilibrium).
At first sight one might conclude that a similar effect occurs
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Figure 5. Partial pair distribution functions gαβ(r) for GeO2 plotted at
T = 3000 and 3760 K, comparing classical MD with CPMD. Also
the experimental values for the nearest-neighbor distance at
T = 300 K are included [46]. The inset in the oxygen–oxygen
correlation (part (c)) shows a magnified view of the side maximum
appearing around r ≈ 1.5 Å.

for GeO2 as well (figure 7(a)), but a closer analysis reveals
that most of the differences between CPMD and MD stem
from the fact that the former suffers from finite size effects
(figure 7(b)): when we use N = 60 in the MD calculation,
we find almost perfect agreement with the CPMD calculation
that uses N = 60 as well. Also the strong difference between
the CPMD results for N = 60 and 120 show that one cannot
trust the CPMD results for P(n), due to these dominant finite
size effects. Clearly, for a quantity that depends sensitively
on the order of intermediate length scales like P(n) it is more

Figure 6. Schematic picture of a ring of length n = 6, illustrating
also the definition of the angle θGeGeGe and the distance d between
neighboring Ge atoms (a). A ring of length n = 2 and the angle
θGeOGe is sketched in (b), and the tetrahedral angle θOGeO in (c).

important to choose a large enough system rather than to work
with very realistic descriptions of the forces, as provided by
CPMD.

Hence while CPMD is less useful for the study of
properties that depend sensitively on medium range order, it
clearly is of great interest for the assessment of local properties,
such as the distributions of angles between the ‘bonds’ in
the structure. These distributions have also been obtained
by MD for a wide range of temperatures (figure 8). The
definition of the Ge–Ge–Ge angle is indicated in figure 6(a);
other angles are defined analogously. A remarkable feature
is that all distributions, with the exception of the tetrahedral
angle O–Ge–O, have a double peak shape, and are rather
broad. Only the distribution of the tetrahedral angle tends
towards a Gaussian shape, as the temperature is lowered, and
gets somewhat sharper; in a random network structure formed
by ideal tetrahedra only, this distribution would be a delta
function, δ(θ − θtetr) with θtetr = 109◦.

The relative weight of the peak at θ = 60◦ of the Ge–
Ge–Ge angle decreases with decreasing temperature, as well
as the weight of the peak at θ = 90◦ for the Ge–O–Ge angle
distribution. A consideration of the geometry of the rings
(figure 6) immediately shows that the peak of P(θ) for the
Ge–Ge–Ge angle can be attributed to rings with n = 3, and
similarly the peak of P(θ) for the Ge–O–Ge angle at θ = 90◦
is due to rings with n = 2. Such small rings can be frequently
observed in the structure of GeO2 at high temperatures, while
at low temperatures the network becomes much more regular,
and the density of all small rings decreases significantly.

For T = 2530 K, the position of the main peak of
the distribution P(θ) for the Ge–O–Ge angle is 133◦. It is

7
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Figure 7. Probability P(n) that a ring of length n occurs, plotted
versus n, for T = 3000 and 3760 K, comparing MD and CPMD (a),
and the same comparison including an MD study where N = 60, as
in the CPMD calculation (b).

gratifying that this number coincides with the corresponding
experimental estimates [40, 84]. This agreement is a further
indication that the OE potential is able to provide a rather
realistic description of the structure.

The side peaks of figures 8(a) and (b), tend to disappear at
physically relevant temperatures, i.e. the number of rings with
n = 2 and 3 becomes significantly smaller with decreasing
temperature. This is also revealed by the temperature
dependence of the ring length distribution P(n), indicating
that the small rings essentially do not persist into the glass
phase [66]. The main peaks of the GeGeGe and GeOGe
distributions seem to stay rather broad, as expected due to the
disorder in the network structure. Only in the various crystal
structures of GeO2 at low temperatures we would expect very
sharp distributions of all angles; in the glass structure only the
distributions of the angles inside a tetrahedron become rather
sharp at low temperatures.

In this respect, the distribution of the angle θ between
O–O–O bonds is special: figure 8(d) shows that two peaks
occur, which clearly persist at low temperatures. The obvious
explanation is that there are two distinct possibilities: the peak
at θ = 60◦ can be attributed to oxygen atoms belonging to
the same tetrahedron, while the peak at θ ≈ 110◦ is due to
oxygens belonging to two neighboring tetrahedra. In fact, as
the temperature decreases the structure of a single tetrahedron

approaches closer and closer to that of an ideal tetrahedron,
whose faces are perfect triangles, having angles of 60◦. In
view of this, the observation that the peak at θ = 60◦ becomes
clearly sharper with decreasing temperature is not surprising.

Now we turn to the comparison of these angular distribu-
tions to the corresponding CPMD predictions (figure 9). The
general shape of these distributions is very similar, with the
exception of the Ge–O–Ge angle, where the side peak at 90◦
(due to rings with n = 2) is broadened into a shoulder only,
indicating that the OE potential overestimates in particular the
rigidity of this structural element (a schematic picture of a ring
with n = 2 is shown in figure 6(b)). We also note that the
CPMD distributions are always somewhat broader than the MD
results at the corresponding temperature. This indicates that
the CPMD calculation, if we could parametrize it in terms of
an effective pair potentials having the OE or BKS form, would
yield a systematically softer potential. In fact, if one compares
the CPMD calculation at T = 3000 K to the classical calcula-
tion at T = 3760 K, the differences are much smaller [66]. Of
course, we do not wish to imply that the differences between
CPMD and MD could be fully eliminated by a renormalization
of the temperature scale: for the main peak of the Ge–O–Ge
angle distribution, CPMD at T = 3000 K implies a peak at
about 129◦, while the MD calculation yields a peak at about
133◦ (this value depends much less on temperature than the
CPMD peak position does). We have also done MD simula-
tions with N = 60 particles only, to rule out that the differ-
ences seen in figure 9 are simply due to finite size effects [66].
Figure 9(a) also indicates for the Ge–Ge–Ge distribution that
the CPMD result for N = 60 is only slightly different from
that at N = 120 (for the other distributions the differences are
even smaller).

As a conclusion of this section we may state that the OE
potential predicts slightly too rigid structures in comparison
to CPMD, and this difference is most pronounced at rather
high temperatures. However, the overall agreement between
the structure as predicted by the OE potential and the
structure resulting from CPMD is very good. The same
conclusion also emerges from an analysis of the distribution of
coordination numbers [66]. The comparison to experimental
data, whenever available, also suggests the statement that the
OE potential provides a reasonably accurate description of the
static structure of molten and glassy GeO2.

4. Dynamic properties of GeO2 melts

From the MD runs in the NVE ensemble, it is straightforward to
record both the mean square displacements (MSD) of a tagged
particle of type α (α = {Ge, O}) [4, 6, 81],

〈r 2
α(t)〉 = 1

Nα

Nα∑
i=1

〈|�ri (t) − �ri (0)|2〉, (8)

and the intermediate incoherent scattering function

Fα
s (q, t) = 1

Nα

Nα∑
i=1

〈exp{−i�q · [�ri(t) − �ri (0)]}〉. (9)
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Figure 8. Distribution functions P(θ) of various angles θ , obtained from MD for a wide range of temperatures, as indicated. Case (a) shows
the Ge–Ge–Ge angle, case (b) the Ge–O–Ge angle, case (c) the O–Ge–O angle and case (d) the O–O–O angle.

Figure 9. Comparison between MD and CPMD results at T = 3000 K for the distribution functions of various angles, Ge–Ge–Ge (a),
Ge–O–Ge (b), O–Ge–O (c) and O–O–O (d). All MD results refer to N = 1152, while the CPMD are results are for N = 120 (for the
Ge–Ge–Ge distribution also the CPMD result for N = 60 is shown).
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Figure 10. Log–log plot of the MSD for Ge (a) and O (b) versus time
for different temperatures. The leftmost curve corresponds to
T = 6100 K, the rightmost curve to T = 2530 K, temperatures in
between are 5200, 4700, 4300, 4000, 3760, 3580, 3400, 3250, 3100,
3000, 2900, 2750, and 2640 K.

The MSD allows us to estimate the self-diffusion constants,
applying the Einstein relation

Dα = lim
t→∞

[〈r 2
α(t)〉/(6t)

]
. (10)

Figure 10 shows our MD data for the MSD. One sees the
standard behavior, familiar from MD simulations for SiO2 [15]
and many other systems [6]. At very short times, a ballistic
regime is seen (〈r 2

α(t)〉 ∝ t2). Then, at high temperatures, a
rapid crossover to the linear diffusive regime occurs (〈r 2

α(t)〉 =
6Dαt), while at lower temperatures, i.e. in the range 2530 K �
T � 3250 K, a plateau is observed at intermediate times, where
the MSD does not increase, but rather stays constant at about
〈r 2

α(t)〉 ≈ 0.5 Å
2
. This plateau is commonly interpreted as

the onset of the ‘cage effect’ [3, 6]: each atom sits in a ‘cage’
formed by its nearest neighbors and the lower the temperature
the more time it takes until the atom can ‘escape from the cage’.
Of course, such mobility implies that the network of bonds in
the random network structure is not rigid, sometimes a bond
‘breaks’ [15] and coordination defects appear, which later can
anneal again.

The MSD, as obtained from MD simulation with the OE
model, can be also compared to corresponding CPMD results.
In figure 11 the MSD for oxygen is displayed in a log–log
plot (the MSD for germanium exhibits a similar shape and

Figure 11. Log–log plot of the MSD for oxygen versus time,
comparing classical MD and CPMD results at two temperatures,
T = 3000 and T = 3760 K, and at different system sizes, as
indicated. At T = 3760 K, the MSD from the classical MD is shown
for systems of N = 60 and 1152 particles.

is therefore not shown here). The behavior seen in figure 11
is not surprising at all, in view of our findings for static
properties as described in detail in the previous section: the
time dependence of the MSD found for T = 3000 K by
CPMD superimposes almost exactly with the MD results for
T = 3760 K, reinforcing the finding that CPMD is essentially
equivalent to the use of pair potentials that are slightly softer
than the OE potential but otherwise very similar. As a further
caveat we mention the effect of the Nosé–Hoover thermostat
(needed in CPMD, not in MD), which may have slightly sped
up the CPMD dynamics, though we do not have any real
evidence that this effect is already important on time scales up
to 20 ps that are shown in figure 11. Also shown in figure 11
is the MSD for oxygen at T = 3760 K and ρ = 3.45 g cm−3,
as obtained from a classical simulation with N = 60 particles.
This curve indicates that the dynamics becomes slightly slower
with decreasing system size (in agreement with our recent
finding for SiO2 [23]). Thus, the higher diffusivity of the atoms
in the CPMD simulation cannot be referred to the small system
size used in the ab initio approach.

In figure 12 a plot of the diffusion constants is presented,
choosing a logarithmic ordinate scale and inverse temperature
as abscissa, so Arrhenius relations show up as straight lines,
since then (compare to equation (1))

Dα = Dα,∞ exp[−Ea,α/(kBT )]. (11)

The activation energies resulting from the fits in figure 12 are
Ea,Ge = 3.41 eV ± 0.05 eV and Ea,O = 3.25 eV ± 0.05 eV. As
can be also inferred from figure 12, oxygen diffuses slightly
faster than Ge, and this difference becomes slightly more
pronounced with decreasing temperature, due to the slightly
higher activation energy of Ge. A similar behavior is well
known for SiO2 [6, 15].

While in the case of SiO2 experimental data for self-
diffusion constants DSi, DO are available, we are not aware of
suitable data for GeO2. However, when we disregard the small
difference between DGe and DO, a rough estimation of these

10
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Figure 12. Self-diffusion constants of Ge and O in GeO2 melts
plotted versus inverse temperature. For comparison, results for Si and
O in SiO2 melts (taken from [15]) are included. The dashed and
dotted lines serve as a guide to the eye. Straight lines indicate fits to
the Arrhenius relation, equation (11). Also an Arrhenius fit resulting
from experimental viscosity data [36] via equation (12) is included.

diffusion constants is possible with the well-known Stokes–
Einstein relation [6, 81],

D = kBT/[cπηR], (12)

with the constant c = 4 if one assumes slip boundary
conditions for the particle diffusion in the fluid, η is the shear
viscosity of the fluid, and R the radius of the diffusing particle.
In principle, equation (12) is a result from hydrodynamics,
and makes sense only if R is much larger than interatomic
distances. However, in the spirit of the finding that often
descriptions based on hydrodynamics work down to the
molecular scale (see [85] for a recent example), equation (12)
is used also for diffusing atoms or molecules. Then using
for R the Ge–O nearest-neighbor distance, R = 1.75 Å,
the experimental viscosity data of Riebling [36] are readily
converted into the self-diffusion constant, and the resulting
Arrhenius fit (implying Ea = 3.565 eV) is also included in
figure 12 and in very good agreement with our simulations.

In contrast to our results, previous simulations [52, 53]
gave activation energies in the range between 1 and 1.2 eV.
There are many indications that the potential used by
Hoang [52] cannot describe GeO2 as accurately as the OE
potential does; moreover his results presumably suffer from
aging effects due to insufficient equilibration. The latter
criticism also applies to the study of Micoulaut et al [53],
where the system configurations were taken from one cooling
run applying a cooling rate of 2.5×1012 K s−1, although states
in the temperature range from 940 K � T � 2480 K were
considered. It is clear that such configurations are far from
equilibrium, even at T = 2940 K these data [53] do not show
any sign of the cage effect, and at the lower temperature (T =
940 K), which is only about 100 K higher than the experimental
glass transition temperature, the structural relaxation time is
only of the order of nanoseconds, which proves that the melt
is in a state very far from equilibrium, in the initial stages of
aging.

Figure 13. Incoherent intermediate scattering functions FGe
s (q, t) (a)

and FO
s (q, t) (b) for GeO2 at q = 1.55 Å

−1
, where the static

structure factor S(q) exhibits the first sharp diffraction peak, plotted
versus time (on logarithmic scale) for a broad range of temperatures
(the leftmost curve corresponds to T = 6100 K, the rightmost curve
to T = 2530 K, temperatures in between are 5200, 4700, 4300, 4000,
3760, 3580, 3400, 3250, 3100, 3000, 2900, 2750, and 2640 K).

We now turn to the analysis of intermediate scattering
functions (figure 13). Again we note the qualitative
similarity of these curves to data for many other glassforming
fluids [6, 15]. While at high temperatures the decay of
Fα

s (q, t) resembles a simple exponential, for T � 3400 K
the decay occurs in two steps, due to the cage effect. The
so-called ‘β-relaxation’ is the time regime around the plateau,
while the final decay from this plateau to zero is called ‘α-
relaxation’ [3, 6]. Whereas, at high temperatures Fα

s (q, t)
decays to zero on the ps timescale, at the lowest accessible
temperatures the ‘lifetime’ of the plateau already extends into
the ns time range. In order to define the structural relaxation
time τα(q, t), we follow [17] by requesting that for t =
τα(q, t) the scattering function has decayed to a value of 0.1.
Thus,

Fα
s (q, t = τα(T )) = 0.1, α = Ge, O; (13)

here we have omitted the argument of the structural relaxation
time, since in the present context only the value of q ,
corresponding to the location of the FSDP in the static structure
factor, is of interest.

Figure 14 presents a log–log plot of τGe(T ) and τO(T )

against T − Tc, Tc = 2490 K ± 100 K being an estimate for
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Figure 14. Log–log plot of τGe and τO(T ) in fluid GeO2 versus
T − Tc, using Tc = 2490 K. The bold lines are fits with power laws
∝(T − Tc)

γ using γ = 2.5. The inset shows the same data as
log[τα(T )] versus 1/T . The straight line in the inset is a fit with an
Arrhenius law (∝ exp[Ea/(kBT )]) with Ea = 3.57 eV.

the mode coupling [3] critical temperature. Of course, it is well
known that no real divergence of τα(T ), implying an ergodic-
to-nonergodic transition and a divergence of the viscosity at
Tc, can occur in real glassforming fluids [6]: rather idealized
mode coupling theory [3] is a kind of mean field theory for the
dynamic correlation functions of glassforming fluids, which
supposedly holds for T > Tc but not too close to Tc, since
the predicted divergence at Tc is rounded off. The standard
albeit heuristic interpretation is that an infinite lifetime of the
cage ‘imprisoning’ of the particles is prevented by thermally
activated processes, so-called hopping processes, which break
up the cage even for T = Tc and T < Tc. So Tc only plays
the role of a crossover temperature, where the temperature
dependence of τα(T ) crosses over from the power law τα(T ) ∝
(T − Tc)

−γ to an Arrhenius law. Note that we find the value
γ = 2.5 ± 0.1 for the critical exponent. This value is slightly
higher than the one estimated from simulations of silica [17].
The inset of figure 14 shows that indeed at lower temperatures
our estimates for τα(T ) are consistent with an Arrhenius law.
The activation energy is Ea = 3.57 eV ± 0.05 eV in this case,
i.e. slightly higher than those determined for the self-diffusion
constants (see figure 12). Of course, this crossover from a
power law to thermally activated behavior is by no means
sharp, but actually rather gradual, and this smooth behavior
near Tc necessarily prevents us from an accurate estimation of
Tc: data near Tc may deviate from the straight line on the log–
log plot due to the onset of the crossover, even if the estimate
for Tc is correct; thus, the precise range of temperatures for
which τα(T ) should be fitted to the power law is somewhat
uncertain, and this leads to a considerable uncertainty about
Tc. However, as we can infer from figure 14, the deviations to
the mode coupling prediction for τα(T ) are small at the lowest
simulated temperatures. Thus, we can conclude that the mode
coupling prediction for τα(T ) essentially holds above about
2500 K.

As further evidence for the applicability of mode coupling
theory to describe the dynamics of molten GeO2 at high
temperatures, figure 15 shows a test of the time temperature

Figure 15. Incoherent intermediate scattering functions Fα
s (q, t)

plotted versus the scaled time t/τα for Ge (a) and O (b). The
temperatures shown are the same as those of figure 13.

superposition principle [3, 6]. Of course, the β-relaxation is
not supposed to follow this α-scaling and thus the upper part
of the curves splay out, while the decay of the plateau (for
temperatures where a plateau exists) follows this scaling nicely.
The quality with which this scaling holds clearly is comparable
to that observed for silica and fragile glassformers.

In SiO2, Saika-Voivod et al [31] have tried to link
the relaxation dynamics to structural anomalies, such as the
occurrence of a density maximum [31]. These authors have
found some evidence for the occurrence of a kind of liquid–
liquid phase transition in fluid SiO2 at suitable conditions of
temperature and pressure, i.e. there should exist two phases of
fluid SiO2 with different densities and different structures of
the random network of covalent bonds. If this interpretation is
correct, figures 12 and 14 would suggest that one should seek a
similar interpretation in molten GeO2, too. However, our data
(and the experimental data) for the density of GeO2 give no hint
for the structural anomalies of molten GeO2 similar to those of
SiO2 (see figure 1).

Finally, we address the question to what extent the Stokes–
Einstein relation is valid for germania. In equation (12), this
relation was used to link experimental viscosity data [36] to the
self-diffusion constants (figure 12). While it would be possible
to estimate the shear viscosity from the time-correlation of
the off-diagonal pressure tensor components [58, 59], and
such an approach has also been shown feasible for molten
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Figure 16. Plot of the product τα(T )Dα(T ) versus temperature, for
α = Ge and O, as indicated. Simulation results (data points) are
connected by lines to guide the eye.

SiO2 [15], the statistical errors of the resulting estimates are
very large. Since one usually associates the shear viscosity
with the structural relaxation time, we tentatively tested to
what extent the product τα(T )Dα(T ) is constant (figure 16).
Similarly to SiO2, where the product η(T )Dα(T )/T could be
studied [15], one sees some increase of this Stokes–Einstein
ratio, but the increase again is not really dramatic. Much more
dramatic violations of the Stokes–Einstein relation have been
observed for various materials near Tg, and this has received a
lot of attention in the literature (see e.g. [14, 86–88]). All of our
data are far above the melting temperature of GeO2, and we can
say that in this temperature regime a dramatic breakdown of the
Stokes–Einstein relation does not occur. If a breakdown occurs
near Tg, this would imply that the good agreement between the
experimental data in figure 12 and our estimates for the self-
diffusion constants is merely accidental.

5. Conclusions

In the present work, we have described the results of a
simulation study of fluid GeO2 at zero pressure, based on
extensive MD runs using the Oeffner–Elliott potential. In
the temperature region T � 2530 K the melt has been
carefully equilibrated, while glassy structures of amorphous
GeO2 at room temperature were also produced, cooling down
the system with two different cooling rates which however
produced only minor structural differences. To validate
our potential, also an ‘ab initio’ Car–Parrinello molecular
dynamics (CPMD) study was performed, which is limited
to even higher temperatures (T � 3000 K) and very small
systems (N � 120 atoms). When we consider properties
at small enough scales where systematic errors due to finite
size do not matter, we find very good agreement between
the MD and CPMD descriptions, for both static and dynamic
properties. The most important distinction is that the effective
potential to which CPMD corresponds is slightly softer than
the OE potential. However, the OE potential is clearly more
accurate than other (empirical) potentials that were used in the
literature, and our results also agree rather well with the (albeit
somewhat scarce) experimental data which are available so far.

Having shown that OE potential is reasonably accurate, it
would be interesting to use it both for a more complete study
of the dynamics of molten and glassy GeO2, and for a careful
study of GeO2 under pressure. This must be left to future work.
Also it would be interesting to use CPMD to construct a new
effective potential which is even more accurate than the OE
potential. Such attempts have been made [66], but so far have
not been successful.

Our results suggest that for T � 2500 K a crossover
sets in for the dynamical properties from a thermally activated
behavior of various quantities to a behavior described by
mode coupling theory, similar to previous findings for silicon
dioxide. In view of our results it is not too surprising that in
the temperature range T � 1600 K no experimental evidence
for mode coupling effects could be found [42]. Thus, it would
be very useful if measurements could be extended to higher
temperatures. Also a measurement of self-diffusion constants
would be useful, to test the finding that only a rather weak
violation of the Stokes–Einstein relation occurs in GeO2.

GeO2 and SiO2 are the two archetypical examples for
strong glassformers. Our results imply that they behave
qualitatively similar, including the crossover to mode coupling
type behavior at temperatures far above melting. The
latter crossover is also characteristic for fragile glassformers.
However, it is interesting that, in contrast to typical fragile
glassformers, the critical mode coupling temperature is above
the melting temperature. It has to be seen in future studies
whether the relative location of critical temperature and
melting temperature can be used as a criterion to distinguish
fragile and strong glassformers.

In conclusion, we hope that the present work helps to sort
out the many questions concerning the possible universality (or
lack thereof) in glassforming fluids, and will stimulate further
experimental and theoretical work on the above issues.
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system (JUMP) of the John von Neumann Institute for
Computing (NIC).

References

[1] Zallen R 1983 The Physics of Amorphous Solids
(New York: Wiley)
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